## Geometrica for Mathematica 6

## Tour of Geometric

## Bruno Autin <br> MuSoftware <br> bruno.autin@mac.com

Tour of Geometrica

## Calling Geometrica

Tour of Geometrica
Each time you need Geometrica, execute the following command.
Tour of Geometrica
<< Geometrica-

Tour of Geometrica
To see the results of the commands contained in that notebook and in any other notebook of the Geometrica documentation, execute the input cells sequentially. If you forget to do so, you may have to deal with undefined variables.

Tour of Geometrica
Geometrica versus Cabri or Sketchpad

| Features | Cabri or Sketchpad | Geometrica |
| :---: | :---: | :---: |
| interactivity | mouse | mouse, keyboard or palette |
| geometry | euclidean | analytical |
| functions | $" * * "$ | $" * * * * "$ |
| multiple objects | no | yes |
| abstract objects | no | yes |
| geometrical functions | no | yes |

## Tour of Geometrica

Geometrica and Mathematica

| list processing |
| :---: |
| symbolic facilities |
| functional programming |
| Draw and Draw3D commands |
| many new geometrical functions |

Tour of Geometrica
Euclidean and Analytical geometries

Tour of Geometrica
Primary concept in EUCLIDEAN geometry: CPoint $\rightarrow$ superb reasoning (unfortunately disappearing!)
Primary concept in ANALYTICAL geometry: COORDINATES $\rightarrow$ unification of geometry and algebra (Descartes and the theory of curves).

Tour of Geometrica
Solving an elementary problem

Tour of Geometrica
The best navigation consists of choosing a simple problem and to see how it is solved. We shall study the generation of a parabola as the envelope of one edge of a square ruler whose vertex describes a line and the other edge passes through a fixed point.

Tour of Geometrica

- Point, line and first drawing

Tour of Geometrica
$\mathrm{m}=\mathrm{CPoint}[1,0]$
Tour of Geometrica
CPoint [1, 0]

Tour of Geometrica
The straight line is the $y$-axis
Tour of Geometrica
$d=\operatorname{CLine}[1,0,0]$
Tour of Geometrica
CLine [1, 0, 0]

Tour of Geometrica

- Bound point and euclidean line

Tour of Geometrica
The edge passing through $m$ is defined by a second point bound to $d$ :
Tour of Geometrica

```
m1 = Pointer [d,t]
d1 = ELine[m, m1]
```

Tour of Geometrica
CPoint $[0,-t]$

## Tour of Geometrica

Tour of Geometrica

## - Geometrical function

Tour of Geometrica
The other edge $d_{2}$ is perpendicular in $m_{1}$ to $d_{1}$.
Tour of Geometrica

```
d2 = ELine[m1, d1]
```

Tour of Geometrica

$$
\text { CLine }\left[1, t, t^{2}\right]
$$

## - Derivative of a geometrical function

Tour of Geometrica
When the parameter $t$ varies, the line $d_{2}$ moves. Between two infinitesimally close positions, the two lines intersect at a point of the envelope.

Tour of Geometrica

```
d21 = D[#, t] & /@ d2
mp = d2 \ d21
```

Tour of Geometrica

```
CLine [0, 1, 2 t]
```


## Tour of Geometrica

```
CPoint[t', -2 t]
```

Tour of Geometrica

- Viewing the envelope process

Tour of Geometrica
We are now curious to see the motion of the line $d_{2}$ or, more precisely of the square ruler ( $\mathrm{m}, \mathrm{m} 1, \mathrm{mp}$ ). This is an opportunity to show a geometrical animation using the Manipulate function of Mathematica 6.0.
First, the fixed elements of the diagram are drawn. Let us note that mp is nothing but the parametric representation of a curve.
In Geometrica, a curve is described by the function PPoint whose arguments are the two coordinates written as pure functions and the range of variation (rule PRange) of the parameter:
Tour of Geometrica

$$
p=\text { PPoint }[\# \wedge 2 \&,-2 \# \&, \text { PRange }->\{-5,5\}] ;
$$

Tour of Geometrica
Text is added to point $m$ and line $d$ using the function Legend which is Listable. The option Offset $\rightarrow\{r, \phi\}$ shifts the text with respect to the object on a cicle of radius $r$ at an azimuth $\phi$.
Tour of Geometrica

```
te = Legend[{"m", "d"}, {m, d}, Offset -> {1.5, 0}];
```

Tour of Geometrica
Then the graph is produced but not displayed by terminating the statement with a semi-colon.
Tour of Geometrica

```
g1 = Draw[DrawRange[-5, 5], te, Blue, m, d, p];
```

Tour of Geometrica
The variable part of the diagram is the square ruler defined by
Tour of Geometrica

$$
\operatorname{sr}\left[t \_\right]=\text {Segment }[m, m 1, \mathrm{mp}] ;
$$

Tour of Geometrica
In Geometrica, the function Segment is used not only for an ordinary segment of straight line limited by two points but for any polygonal line. The animation is produced by the display of the fixed ( g 1 ) and variable ( g 2 ) diagrams using Manipulate which has the same syntax as Table.

## Tour of Geometrica

```
Manipulate[g2 = Draw[Red, sr[t]];
    Show[g1, g2], {t, -5, 5}]
```

Tour of Geometrica


Tour of Geometrica
Illustration in 3D

Tour of Geometrica
The previous problem can be visualized in 3D by replacing the parabola by a cylinder with a parabolic directrix.

Tour of Geometrica

## - 3D conic

Tour of Geometrica
A 2D object can be converted into a 3D object using the command To3D.
Tour of Geometrica

```
p3D = To3D [p]
```

Tour of Geometrica

```
PPoint[#12 &, -2 #1 &, 0#1&, PRange }->{-5,5}
```


## Tour of Geometrica

The parabola is defined by its 2D representation and located in the horizontal plane. A point belonging to the parabola is still obtained using Pointer,

## Tour of Geometrica

```
t =.;
m3D = Pointer[p3D, t]
```

Tour of Geometrica

```
CPoint[t' }\mp@subsup{t}{}{2},-2t,0
```

Tour of Geometrica
and the tangents using ELine.
Tour of Geometrica

```
tg = ELine [p3D,t]
```

Tour of Geometrica


## Tour of Geometrica

## - Cylinder

Tour of Geometrica
A cylinder is defined by a curve, here the parabola, and a generator parallel to a fixed direction Oa where a has been chosen as the point of $O z$ of height 1 . The cylinder is given in parametric form. The 2D parabola $p$ is automatically interpreted as a 3D curve in ECylinder.
Tour of Geometrica

$$
\text { cyp }=\text { ECylinder }[\operatorname{CPoint}[0,0,1], p]
$$

Tour of Geometrica

$$
\text { PPoint }\left[\# 1^{2} \&,-2 \# 1 \&, \# 2 \&, \operatorname{PRange} \rightarrow\{\{-5,5\},\{-\pi, \pi\},\{25,2\}\}\right]
$$

Tour of Geometrica
The second parameter describes a point on a generator. By default, the height varies between $-\pi$ and $\pi$. Let us change that range to $(-10,10)$.

```
cyp = cyp /._Rule }->\mathrm{ (PRange }->{{-5,5},{-10,10},{25,2}}
PPoint[#12&,-2#1&,#2&, PRange }->{{-5,5},{-10,10},{25,2}}
```

Tour of Geometrica
The planes tangent to the parabolic cylinder are represented by parallelograms. A parallelogram is a special quadrangle that may be defined by three vertices only. The first vertex, called here a1, is the origin of the parallelogram. It is deduced from the origin a of the tangent to the parabola by translation of vector $(0,0,-10)$. The second vertex is obtained by translation of the contact point m3D by the vector $(0,0,-10$. The third point a2 is symmetric to a1 with respect to the reference horizontal plane.
Tour of Geometrica

```
a = Pointer[tg, 0];
{a1, a2} = Translate[a, CPoint[0, 0, {-10, 10}]]
```

Tour of Geometrica

$$
\left\{\text { cPoint }\left[-\frac{t^{2}}{1+t^{2}},-\frac{t^{3}}{1+t^{2}},-10\right], \text { CPoint }\left[-\frac{t^{2}}{1+t^{2}},-\frac{t^{3}}{1+t^{2}}, 10\right]\right\}
$$

Tour of Geometrica

```
b = Translate [m3D, CPoint [0, 0, - 10] ]
```

Tour of Geometrica

$$
\operatorname{CPoint}\left[t^{2},-2 t,-10\right]
$$

## Tour of Geometrica

The parallelogram is then given by

## Tour of Geometrica

```
Clear[pp]
pp[t_] = Parallelogram[a1, b, a2]
```

Tour of Geometrica

$$
\begin{aligned}
& \text { Segment }\left[\operatorname{CPoint}\left[-\frac{t^{2}}{1+t^{2}},-\frac{t^{3}}{1+t^{2}},-10\right], \operatorname{CPoint}\left[t^{2},-2 t,-10\right]\right. \\
& \text { CPoint } \left.\left[t^{2},-2 t, 10\right], \operatorname{CPoint}\left[-\frac{t^{2}}{1+t^{2}},-\frac{t^{3}}{1+t^{2}}, 10\right], \operatorname{CPoint}\left[-\frac{t^{2}}{1+t^{2}},-\frac{t^{3}}{1+t^{2}},-10\right]\right]
\end{aligned}
$$

Tour of Geometrica
The full figure can now be drawn:
Tour of Geometrica

```
g3 = Draw3D@Paint[cyp, Blue];
```

Tour of Geometrica

```
Animate[g4 = Draw3D@Paint[pp[t], Red];
    Show[g3, g4],
    {t, -5, 5}]
```

Tour of Geometrica


Tour of Geometrica
The colors are not as vivid as one might expect because the objects are transparent. The graphics directive Opacity is set to .4 by default in Geometrica. In the next example, its is set to 1 for the parallelograms.

```
Animate[g4 = Draw3D[Opacity[1], Paint[pp[t], Red]];
    Show [g3, g4],
    \(\{t,-5,5\}]\)
```

Tour of Geometrica


Tour of Geometrica

## CAD functions

Tour of Geometrica

- Walls as examples of parallel polygons

Tour of Geometrica
A line $L$ 'is parallel to a line $L$ when it is generated by the end of a segment attached and normal to $L$. This defintion assumes that $L$ represents a continuous and derivable function, which is not true for a polygon which has no normal at a vertex. A convention is introduced in Geometica to define a parallel polygon. It is illustrated for the walls of a house.

```
x = {0, 1, 3, 4, 4, 5, 7, 8, 8, 8, 8, 0, 0, 0};
y = {0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 4, 3, 2};
m = CPoint[x, y];
s = Close[Segment @@ m];
Draw[m, s]
```

Tour of Geometrica


Tour of Geometrica
The wall is a list of polygons. Some polygons may be windows or doors. They can be identified by varying the color of the polygons. In this example, there are one door (in gray) and three windows (in white).
Tour of Geometrica

```
w = Wall[s, . 3];
Col = {Black, White, Black, Black, Black, White,
    Black, Black, White, Black, Black, Black, Gray, Black};
Draw[Paint[w, col]]
```

Tour of Geometrica


Tour of Geometrica

- Putting dimensions on a technical drawing

Tour of Geometrica
The drawing can finally be conpleted with the dimensions of the wall.

```
dim = Dimension[s];
Draw[Paint[w, col], dim]
```

Tour of Geometrica


Tour of Geometrica

- Helicoidal staircase


## Tour of Geometrica

## sC = HelicoidalStaircase[];

Draw3D@Paint[sc]

## Tour of Geometrica



## Tour of Geometrica

Then various variables and options are at hand to parametrize the staircase. The detail of a step is shown by drawing $\frac{1}{36}$ of the full staircase whose stair width is equal to 1 , pitch is 1 and angular step is $\frac{\pi}{18}$. Each stair has a thickness and a recess which have optional values. Optional are also the sense of rotation, the inner radius and the initial angle. The stair is represented here from two opposite view points.

```
stair = HelicoidalStaircase[1, 1, 1/ 36, Pi / 18];
Draw3D[Paint[List @@ stair, {GrayLevel[.4], GrayLevel[.6],
            GrayLevel[.4], GrayLevel[.6], GrayLevel[.4]}], #] & /@
{ViewPoint }->{-5,-5,5}, ViewPoint -> {5, 5, 5}
```


## Tour of Geometrica



Tour of Geometrica
Variations on parallelism

## Tour of Geometrica

The function Parallel in Geometrica is common in CAD applications where it is rather called Offset. A parallel to a curve or surface $C$ is generated by a point $n$ located on the normal at $C$ in $m$ and at distance $d$ from $m$. In Geometrica, the distance $d$ may be fixed or variable. The simplest case concerns the straight line whose parallel is also a straight line.

```
d = CLine[0, 1, 0];
d1 = Parallel[d, .5];
Draw[Blue, d, Red, d1]
```

Tour of Geometrica
The notion of parallelism is however much more general than that simple case. The next diagram represents a particle oscillation of fixed amplitude about a circle. Here the distance varies and the reference curve is a circle. The replacement $(50 \rightarrow 200)$ improves the definition of the curve by acting on the third argument of PRange.

## Tour of Geometrica

$\{\mathrm{m} 1, \mathrm{~m} 2\}=\operatorname{CPoint}[\{2,1\}, 0]$;
c = ECircle[m1, m2]
1 = Parallel[c, . 1 Sin [10\#] \& ] / $(50 \rightarrow 200)$
Draw[Blue, $\mathrm{C}, \mathrm{Red}, \mathrm{l}]$
Tour of Geometrica

```
Ellipse[1, 0, 1, -2, 0, 3]
```


## Tour of Geometrica

PPoint $[2+\operatorname{Cos}[\# 1](1 .+0.1 \operatorname{Sin}[10 \# 1]) \&, \operatorname{Sin}[\# 1](1 .+0.1 \operatorname{Sin}[10 \# 1]) \&, \operatorname{PRange} \rightarrow\{-\pi, \pi, 200\}]$


Tour of Geometrica
The curve may take fancier shapes for larger amplitudes.

```
l = Parallel[c, Sin[10 #] &] / . (50 t 200);
Draw[Blue, C, Paint[l, Red], PlotRange -> All]
```



Tour of Geometrica

```
l = Parallel[c, 2 Sin[10#] &] / . (50 -> 400);
Draw[Blue, C, Paint[l, Red], PlotRange -> All]
```

Tour of Geometrica


## Tour of Geometrica

The function Parallel applies to any 3D curve or surface as well. Next comes a parallel curve of helix.

```
h = Helix[];
l = Parallel[h, 2 Sin[#] &] / . (24 }\boldsymbol{~
Draw3D[Blue, h, Red, l]
```


## Tour of Geometrica

PPoint[Cos[\#1] (1-2 Sin[\#1]) \&, -1 + Cos[2\#1] + Sin[\#1] \&, \#1\&, PRange $\rightarrow\{0 ., 6.28319,100\}]$

## Tour of Geometrica

Tour of Geometrica
Parallel surfaces can also be obtained by modulating one or both parameters. This is a cylinder whose elliptic base is deformed by a sine function.

```
s = EllipticCylinder[];
fu = Sin[#1] &;
sp = Parallel[s, fu]
Draw3D@Paint[sp, Blue]
```

Tour of Geometrica

$$
\begin{aligned}
& \text { PPoint }\left[\operatorname{Cos}[\# 1]+\frac{54608393 \operatorname{Cos}[\# 1] \operatorname{Sin}[\# 1]}{\sqrt{2982076586042449 \operatorname{Cos}[\# 1]^{2}+5964153172084900 \operatorname{Sin}[\# 1]^{2}}}\right. \text { \&, } \\
& \frac{54608393 \operatorname{Sin}[\# 1]}{77227930}+\frac{\operatorname{Sin}[\# 1]^{2}}{\sqrt{\frac{2982076586042449 \operatorname{Cos}[\# 1]^{2}}{5964153172084900}+\operatorname{Sin}[\# 1]^{2}}} \&, \\
& \# 2 \&, \text { PRange } \rightarrow\{\{-\pi, \pi\},\{-\pi, \pi\},\{25,2\}\}]
\end{aligned}
$$

Tour of Geometrica


Tour of Geometrica
The generators only are now modified using the second variable. As the generator is deformed by the modulation of the second parameter, the parameter range is redefined to give the same definition fo both types of isocurves.
Tour of Geometrica

```
fv = 1. 2 #2 &;
sp = Parallel[s, fv] /.
    Rule }->\mathrm{ (PRange }->{{-\pi,\pi},{-\pi,\pi},{25, 25}}
Draw3D@Paint[sp, Blue]
```

Tour of Geometrica

$$
\begin{aligned}
& \text { PPoint }\left[\operatorname{Cos}[\# 1]+\frac{6.55301 \times 10^{7} \operatorname{Cos}[\# 1] \# 2}{\sqrt{2982076586042449 \operatorname{Cos}[\# 1]^{2}+5964153172084900 \operatorname{Sin}[\# 1]^{2}}}\right. \text { \&, } \\
& \frac{54608393 \operatorname{Sin}[\# 1]}{77227930}+\frac{1.2 \operatorname{Sin}[\# 1] \# 2}{\sqrt{\frac{2982076586042449 \operatorname{Cos}[\# 1]^{2}}{5964153172084900}+\operatorname{Sin}[\# 1]^{2}}} \&, \\
& \# 2 \&, \operatorname{PRange} \rightarrow\{\{-\pi, \pi\},\{-\pi, \pi\},\{25,25\}\}]
\end{aligned}
$$

## Tour of Geometrica



Tour of Geometrica
The original cylinder is now submitted to the product of the two previous paraxial functions. The surface can be manipulated by clicking the figure and make it rotate to get different view points and understand how it is folded.

```
fuv = 1.2 #2 Sin[#1] &;
sp = Parallel[s, fuv] /.
    Rule }->\mathrm{ (PRange }->{{-\pi,\pi},{-\pi,\pi},{25, 25}}
Draw3D@Paint[sp, Blue]
```

Tour of Geometrica

$$
\begin{aligned}
& \text { PPoint }\left[\operatorname{Cos}[\# 1]+\frac{6.55301 \times 10^{7} \operatorname{Cos}[\# 1] \operatorname{Sin}[\# 1] \# 2}{\sqrt{2982076586042449 \operatorname{Cos}[\# 1]^{2}+5964153172084900 \operatorname{Sin}[\# 1]^{2}}}\right. \text { \&, } \\
& \frac{54608393 \operatorname{Sin}[\# 1]}{77227930}+\frac{1.2 \operatorname{Sin}[\# 1]^{2} \# 2}{\sqrt{\frac{2982076586042449 \operatorname{Cos}[\# 1]^{2}}{5964153172084900}+\operatorname{Sin}[\# 1]^{2}}} \&, \\
& \# 2 \&, \operatorname{PRange} \rightarrow\{\{-\pi, \pi\},\{-\pi, \pi\},\{25,25\}\}]
\end{aligned}
$$

## Tour of Geometrica



## Tour of Geometrica

## Walls and pipes

## Tour of Geometrica

In real applications, objects have a finite thickness. An example of wall has been given for a polygon, it can be extended to any object. Here a thick hyperboloid of one sheet is drawn. One can see the three parts of the wall: the inner face in green, the outer face in red and the edge in blue.

```
h = HyperboloidOfOneSheet [];
w = Wall[h, .2];
Draw3D[Opacity[1], Paint[w, {Red, Green, Blue}]]
```



Tour of Geometrica
A pipe is a surface whose cross section is a circle. The example is given for a Viviani's window, the intersection of a sphere with a revolution cylinder tangent to the sphere and passing through its center. The cylinder is returned from ECylinder as a cartesian quadric ccy. To adapt its shape to the sphere, its parametric representation is obtained by applying QuadricElements to ccy and extracting the parametric representation given by the rule QuadricPoint. Last the parameter range PRange is updated. A pipe, like a wall, is a complicated surface. Although its evaluation is rather fast ( 1.64 s ), its display takes a noticeable time ( 190 s ) for a definition of 25 points per isocurve.

```
s = ESphere[];
CCY = ECylinder[CPoint[0, 0, 1], ECircle[CPoint[1/2, 0], 1/2]];
mcy = QuadricPoint / ( QuadricElements @@ CCy);
cy = mcy / . _Rule }->\mathrm{ (PRange }->{{0,2Pi},{-1, 1}, {25, 25}})
v = VivianiWindow[];
p = Pipe[v, .1];
Timing@Draw3D[Opacity[1], Paint[{s, Cy, p}, {Blue, Green, Red}]]
```

$\{213.743$,


The user can keep playing with pipes by making the radius vary.

