4150
There is no translation available.

Minitab 22 - Standardabweichung in Wahrscheinlichkeitsnetzen (Lebensdaueranalyse versus Grafik-Menü)

  • Erstellt am 16.12.2015
  • Überarbeitet am 29.4.2024
  • Software: Minitab 22, 21, 20, 19, 18, 17

Bilder

Standardabweichung_Lebensdaueranalyse_versus_Wahrscheinlichkeitsnetz_01 Standardabweichung_Lebensdaueranalyse_versus_Wahrscheinlichkeitsnetz_02 Standardabweichung_Lebensdaueranalyse_versus_Wahrscheinlichkeitsnetz_03

Erläuterung

Im Werkzeug Statistik: Zuverlässigkeit/Lebensdauer: Verteilungsanalyse (Rechtszensierung): Verteilungsgebundene kann man den Button Schätzen anklicken und Maximum-Likelihood als Schätzmethode anklicken. Hat man

  • als Angenommene Verteilung die Normalverteilung ausgewählt und
  • keinen Wert zensiert,
  • und erstellt man außerdem zum Vergleich ein Wahrscheinlichkeitsnetz über das Menü Grafik: Wahrscheinlichkeitsnetz,

so unterscheiden sich die beiden Standardabweichungen voneinander. Warum ist das so?

Das Maximum-Likelihood-Verfahren berechnet die beiden Schätzer für die Parameter der Normalverteilung, den Mittelwert x und die Standardabweichung s so, dass diese Werte die Maximum-Likelihood-Funktion maximieren. Daraus ergeben sich die beiden Schätzer

x¯=1ni=1nxi

s2=1ni=1nxi-x¯2

Hier ist n der Stichprobenumfang. Man erhält dann s als Wurzel aus s2 (dem Schätzer für die Varianz). Auf diese Weise wird die Standardabweichung für die Verteilungsanalyse (Rechtszensierung) im Fall der Normalverteilung berechnet.

Für das Wahrscheinlichkeitsnetz aus dem Menü Grafik wird hingegen die Formel

s2=1n-1i=1nxi-x¯2

verwendet. Der Vorfaktor 1n-1 (an Stelle von 1n) macht den Schätzer s2 erwartungstreu.

Im Downloadbereich dieser FAQ steht ein Minitab-Arbeitsblatt zur Verfügung, in dem diese beiden Schätzer für die Varianz bzw. Standardabweichung zum Vergleich an einem Beispiel nachgerechnet werden. Die Formel der jeweiligen Spalte kann man durch einen Doppelklick auf den grünen Haken oberhalb dieser Spalte nachvollziehen.

Anmerkung

Bei einer Lognormalverteilung lassen sich entsprechend ebenfalls Unterschiede zwischen den Schätzern des Skalenparameters beobachten. Wenn man auf lognormalverteilte Daten den natürlichen Logarithmus anwendet, erhält man normalverteilte Daten, deren Mittelwert und Standardabweichung dem Lage- und Skalenparameter der Original-Daten entspricht. Daraus ergibt sich dieser Unterschied.

Weitere Links

Parameter Schätzmethoden (Beispiel Weibull Verteilung)
Parameterschätzung in der Verteilungsanalyse (Rechtszensierung)
Parameterschätzung in der Verteilungsanalyse (beliebige Zensierung

Question?

This email address is being protected from spambots. You need JavaScript enabled to view it., wenn Sie eine Frage zu diesem Artikel haben.

Download